MA291: Introduction to Higher Mathematics

Baker University — Spring 2024

Each of the following refers to the corresponding section(s) from *Mathematical Proofs: a Transition* to *Advanced Mathematics* (Fourth Edition) by G. Chartrand, A.D. Polimeni, and P. Zhang.

Exam 1	1:	Sets,	Relations,	and	Functions
--------	----	-------	------------	-----	-----------

date	day	section(s)	topic(s)
		81.1. Describing a Set	\circ set membership
1/29	М	§1.2: Subsets	\circ set notation
			\circ subset containment
			◦ union
1/31	W	§1.3: Set Operations	\circ intersection
			$\circ \text{ complement}$
		\$1.4: Indexed Collections of Sets	◦ union
2/2	F	\$1.4. Indexed Collections of Sets	\circ intersection
		g1.5. Farmons of Sets	\circ disjoint sets

date	day	section(s)	$\operatorname{topic}(s)$
		81.6: Cartagian Products of Sata	\circ cardinality
2/5	М	80.1: Polotions	\circ reflexivity
2/0	101	99.1: Relations	\circ (anti)symmetry
		39.2. I toper ties of Relations	\circ transitivity
		80.2. Equivalance Polations	• equivalence classes
2/7	W	\$9.5. Equivalence Relations	\circ modulo operation
		39.4. Properties of Equivalence Classes	\circ canonical partitions
			\circ remainder modulo n
2/9	\mathbf{F}	9.5: Congruence Modulo n	\circ reduction modulo n
			\circ modular arithmetic

date	day	section(s)	$\operatorname{topic}(s)$
			\circ relations
2/12	М	§10.1: The Definition of a Function	\circ domain
			\circ range
	W	810.2: One to One and Onto Functions	\circ injectivity
2/14		\$10.2. Directo-One and Onto Functions	\circ surjectivity
		gio.5. Dijective Functions	• bijectivity
		\$10.4: Composition of Functions	\circ function composition
2/16	F	g10.4: Composition of Functions	\circ function inversion
		giu.5. inverse runctions	\circ examples of function inverses

date	day	section(s)	topic(s)
2/19	М	Exam 1 Review	
2/21	W	Exam 1 Review	Exam 1 Practice Test
			• Chapter 0: Communicating Mathematics
			• Chapter 1: Sets
2/23	F	Exam 1	• Chapter 9: Equivalence Relations
			Omit 9.6 : The Integers Modulo n .
			• Chapter 10: Functions

Exam 2: Logic and Truth Tables

date	day	section(s)	$\operatorname{topic}(s)$
			\circ variable
2/26	М	§2.1: Statements	\circ domain
			\circ truth value
		82.2. Nogations	\circ not, \neg
2/28	W	\$2.2. Disjunctions and Conjunctions	$\circ \text{ or, } \wedge$
		§2.5. Disjunctions and Conjunctions	\circ and, \vee
			• "if-then" statements
3/1	Ŀ	§2.4: Implications	\circ implies, \Longrightarrow
	Г	§2.5: More on Implications	\circ "only if" statements
			\circ converse, \Leftarrow

date	day	section(s)	$\operatorname{topic}(s)$
3/4	М	82.6. Biconditionals	\circ "if and only if"
5/4	101	§2.0. Diconutionals	\circ biconditional, \iff
		§2.7: Tautologies and Contradictions	o truth tables
3/6	W	§2.8: Logical Equivalence	
		§2.9: Fund'l Prop'ties of Logical Equivalence	€ equivalence, ≡
			\circ for all, \forall
3/8	F	§2.10: Quantified Statements	\circ exists, \exists
			\circ uniqueness, !

date	day	section(s)	$\operatorname{topic}(s)$	
3/11	М	Exam 2 Review		
3/13	W	Exam 2 Review	Exam 2 Practice Test	
3/15	F	Exam 2	• Chapter 2: Logic	
3/13	Г	г Exam 2	Omit §2.11: Characterizations.	

Exam 3: Basic Proof Techniques

date	day	section(s)	$\operatorname{topic}(s)$
			• trivial truth
3/25	м	§3.1: Trivial and Vacuous Proofs	\circ vacuous truth
	M	§3.2: Direct Proofs	\circ truth tables
			\circ examples
			\circ contrapositive
3/27	W	§3.3: Proof by Contrapositive	\circ truth tables
			\circ examples

date	day	section(s)	$\operatorname{topic}(s)$
4/1 M		83 4: Proof by Cases	\circ parity
4/1	111	33.4. 1 1001 by Cases	\circ proof strategies
	85.1. Counterexemples	\circ contradiction	
4/3	W	§5.2: Proof by Contradiction	\circ truth tables
			\circ examples
		85 4. Evistoneo Proofa	• truth tables
4/5	F	§5.4. Existence Froois §5.5: Disproving Existence Statements	\circ proof strategies
			\circ examples

date	day	section(s)	topic(s)
4/8	М	Exam 3 Review	
4/10	W	Exam 3 Review	Exam 3 Practice Test
			• Chapter 3: Direct Proof and Proof by Contrapositive
4/12	\mathbf{F}	Exam 3	Omit §3.5: Proof Evaluations.
			• Chapter 5: Existence and Proof by Contradiction

Exam 4: Proofs in the Wild

date	day	section(s)	$\operatorname{topic}(s)$
		86.1: Principle of Mathematical Induction	\circ well-ordering
4/15	М	86.2: General Principle of Mathematical Induction	\circ base case
-1/10	111	S6.2. Strong Dringiple of Mathematical Induction	\circ inductive step
		go.s. Strong runciple of Mathematical Induction	\circ examples
4/17	W	Scholars Symposium	
			\circ divisibility
4/19	F	§4.1: Proofs Involving Divisibility of Integers	\circ parity
		§12.1: Divisibility Properties of Integers	\circ proof strategies
			\circ examples

date	day	section(s)	topic(s)
4/22	М		\circ set containment
		§4.4: Proofs Involving Sets	\circ set equality
		§4.5: Fund'l Prop'ties of Set Operations	\circ DeMorgan's Laws
			\circ examples
4/24	W		◦ tasks
		§13.1: Multiplication / Addition Principles	\circ pairwise disjoint
			\circ examples
4/26	F	§13.3: The Pigeonhole Principle	\circ ceiling function
			\circ examples

date	day	section(s)	$\operatorname{topic}(s)$
4/29	М	§13.4: Permutations and Combinations	ordered listso unordered listso examples
5/1	W	Exam 4 Review	
5/3	F	Exam 4 Review	Exam 4 Practice Test

date	day	section(s)	$\operatorname{topic}(s)$
5/6	М	Exam 4	• §6.1: Principle of Mathematical Induction
			\circ §6.2: General Principle of Mathematical Induction
			\circ §6.3: Strong Principle of Mathematical Induction
			\circ §4.1: Proofs Involving Divisibility of Integers
			\circ §12.1: Divisibility Properties of Integers
			• §4.4: Proofs Involving Sets
			\circ §4.5: Fundamental Properties of Set Operations
			\circ §13.1: The Multiplication and Addition Principles
			\circ §13.3: The Pigeonhole Principle
			\circ §13.4: Permutations and Combinations
5/8	W	Final Exam Review	
5/10	F	Final Exam Review	Final Exam Practice Test

Our final exam will be held Thursday, May 16 from 8:30 AM to 11:30 AM in Case 100.